Leafiness

I thought it might be fun to try something different, and delve back into the world of satellite remote sensing (outside of Sentinel_bot, which isn’t a scientific tool). It’s been a while since I’ve tried anything like this, and my skills have definitely degraded somewhat, but I decided to fire up GrassGIS and give it a go with some publicly available data.

I set myself a simple task of trying to guess how ‘leafy’ streets are within an urban for urban environment from Landsat images. Part of the rationale was that whilst we could count trees using object detectors, this requires high resolution images. While I might do a blog on this at a later date, it was outside the scope of what I wanted to achieve here which is at a very coarse scale. I will be using a high resolution aerial image for ground truthing!

For the data, I found an urban area on USGS Earth Explorer with both high resolution orthoimagery and a reasonably cloud free image which were within 10 days of one another in acquisition. This turned out to be reasonably difficult to find, with the aerial imagery being the main limiting factor, but I found a suitable area in Cleveland, Ohio.

The aerial imagery is a 30 cm resolution having been acquired using a Williams ZI Digital Mapping Camera, and was orthorectified prior to download. For the satellite data, a Landsat 5 Thematic Mapper raster was acquired covering the area of interest, with a resolution of 30 m in the bands we are interested in.

This experiment sought to use the much researched NDVI, a simple index used for recovering an estimate of vegetation presence and health.

Initially, I loaded both datasets into QGIS to get an idea of the resolution differences

jezzer.png

Aerial image overlain on Landsat 5 TM data (green channel)

So a decent start, looks like our data is valid in some capacity and should be an interesting mini-experiment to run! The ground truth data is resolute enough to let us know how the NDVI is doing, and will be used farther downstream.

 

Onto GrassGIS, which I’ve always known has great features for processing satellite imagery, though I’ve never used. It’s also largely built on python, which is my coding language of choice, so I feel very comfortable troubleshooting the many errors fired at me!

The bands were loaded, DN -> reflectance conversion done (automatically, using GrassGIS routines) and a subsequent NDVI raster derived.

ndvi2.png

Aerial image overlain on NDVI values. Lighter pixels denote a higher presence of vegetation

Cool! We’ve got our NDVI band, and can ground truth it against the aerial photo as planned.

ndvi1

Lighter values were seen around areas containing vegetation

Last on the list is grabbing a vector file with street data for the area of interest so we can limit the analysis to just pixels beside or on streets. I downloaded the data from here and did a quick clip to the area of interest.

roads1.png

Vector road network (in yellow) for our aerial image. Some new roads appear to have been built.

I then generated a buffer from the road network vector file, and generated a raster mask from this so only data within 20 m of a road would be included in analyses. The result is a first stab at our leafy streets index!

map1.jpg

Visual inspection suggests it’s working reasonably well when compared with the reference aerial image, a few cropped examples are shown below.

This slideshow requires JavaScript.

Lastly, we can use this this data to scale things up, and make a map of the wider area in Cleveland. This would be simple to do for anywhere with decent road data.

map3.jpgThis might be useful for sending people on the scenic route, particularly in unfamiliar locations. Another idea might be to use it in a property search, or see if there’s a correlation with real estate prices. Right now I’ve run out of time for this post, but might return to the theme at a later date!

 

Control freak

In formulating a research design initially, I spent much time considering how best to control the experiments I was undertaking. Control, from a geoscientific photogrammetry perspective, can really be quite tricky, as the amount of settings and equipment involve can mean that one quickly loses the run of oneself.

Research planning

In my limited wisdom during the planning phase I actually undertook a plan to demonstrate exactly where we would capture imagery from, right down to the OSGB coordinates and orientation of the cameras in the scene, using Cloudcompare to help in visualization. I sourced the topographic data from the LiDAR inventory provided by the UK geomatics service, which provided a DEM with 0.5 m resolution.

FW1.png

A screenshot showing camera positions from my research plan

I think this was a very worthwhile task – it was very demanding in terms of the skills I needed to use and made me think about how far I could bring the experiment in the planning stage. While maybe overkill, I have visions of the near future where one might be able to task a robot with a built in RTK-GPS to acquire images from these exact positions/orientations daily for a specified time period. This would eliminate much of the bias seen in studies done over the same research area, but with different equipment and camera network geometries.

You could argue that this is already happening with programmable UAVs, though I haven’t seen anything that practical for a terrestrial scene. This is outside the scope of this post, but did provide motivation for expanding as much as possible in the planning phase.

So while we might be able to control camera positions and orientations, in the planning phase at least, there are some things we know are absolutely outside our control. The weather is the most obvious one, but with a cavalier attitude I thought how about I might go about controlling that too. This lead me to considering the practicalities of simulating the full SfM workflow.

To attempt this I took a model of Hunstanton which had previously been generated from a reconnaissance mission to Norfolk last May. It had been produced using Agisoft Photoscan and outputted as a textured ‘.obj’ file, a format which I wasn’t overly familiar with, but would become so. What followed was definitely an interesting experiment, though I’m willing to admit it probably wasn’t the most productive use of time.

Controlling the weather

Blender is an open source 3D animation software which I had been toying around with previously for video editing. It struck me that, considering blender actually has a physics based engine, there might be reasonable ways of simulating varying camera parameters within a scene with simulated lighting provided by a sun which we control.

Blender1.png

The Hunstanton obj file, with the Sun included

So the idea here is to put a sun directly overhead, and render some images of the cliff by moving the camera in the scene. For the initial proof of concept I took 5 images along a track, using settings imitating a Nikon D700 with a 24 mm lens, focused to 18 m (approx distance to cliff, from CloudCompare), with shutter speed set to 1/500 s (stationary camera) and ISO at 200. The aperture was f/8, but diffraction effects can’t be introduced in the software due to limitations in the physics engine. The 5 images are displayed below, with settings from the Physical Camera python plugin included at the end.

This slideshow requires JavaScript.

Full control! We have the absolute reference to compare what will be the newly generated model to, we can vary the camera settings to simulate the effects of motion blur, noise and focus and then but the degraded image sets through the software!

Plugging these 5 images back into Agisoft again, masking the regions where there is no data, produces a new point cloud purely derived from the simulation.

FW2.png

Dense point cloud produced from the simulated images

We can then load both the model and derived point cloud into CloudCompare and measure the Cloud-to-mesh distance.

fw_front

From the front

fw_front2

From the back

This is where I left my train of thought, as I needed to return back to doing some practical work. I still think there could be some value in this workflow, though it does definitely need to be hashed out some more – the potential for varying network geometry ontop of all the other settings is very attractive!

For now though, it’s back to real world data for me, as I’m still producing the results for the fieldwork I did back in October!

Too much JPEG!

Having read lots about the JPEG algorithm of late in my investigations of image quality, and having written about it’s effects on image gradients in my last post, I though it would be good to include an entry about it in this blog.

Whilst I invite the more curious reader to delve into the nuances of the algorithm, which in closely related to the Fourier transform which I’ve written about previously, today I’ll be looking past the black box by testing the same key parameter as in the last post which the user has control over, the ‘quality‘ setting. One thing we will note, however, is that the JPEG algorithm operates on 8 x 8 discrete pixel windows, which is one of the more noticeable things when the algorithm is applied at lower quality settings.

Let’s have a look at the impact of varying the quality of a cropped portion (1000 x 1000 pixels) of an image:

The impact at the lower end of the JPG images is dramatic. As the quality is set to 1, 8 x 8 pixel blocks are essentially assigned the same value, and so the image will downgrade visibly. As we increase the quality parameter, this compression will start to disappear, but at quality 25 we can still see some degree of ‘blockiness’ due to the 8 x 8 pixel windows still varying to a large enough degree.

However, past around quality 50 the impact is much more subtle, and I tend not to be able to tell the difference for images cropped to this size. This elucidates the point: The JPG algorithm is amazing at the amount one can save, in terms of file size, in an image.

Let’s take a look at one more set of crops, this time the same image as above, but cropped to just 200 x 200 pixels:

The ‘blockiness’ is certainly evident at quality 50, and less subtle but notable at quality 75. I think the most astounding thing is the lack of perceptible difference between quality 92 and 100, given the file size difference. We can investigate where the difference lies using a comparison image (imagemagick’s compare function), where red pixels show different values. I will also include the difference image between the two cropped sections, which should offer some insight into the spatial distribution of pixel variations, if any exist:

So The mean variation between digital numbers for pixels in each 8 bit band is 1.5, but the file size saving is nearly 75%! The difference image shows that the digital number differences are concentrated in areas of high frequency information, such as along the cracks in the rock wall, areas which could be very important in delineating boundaries, for example.

While subtle, for work which involves photogrammetric precision these effects have not been so well documented – this is one thing I’m working towards within my PhD research. Oftentimes researchers will use JPEGs taken off the camera used, which can have custom filters applied prior to use, making reporting and replication more difficult. If we need to compare research done with different equipment under various lighting conditions on various days, this is one part of the research workflow which is crying out for standardization, as the effects, at least in the case of this one simple example, are clear.

For a visualization of a stack of every quality setting for the first set of crops, please visit this link to my website.