EGU 2017

As a result of a travel grant awarded to me by the Remote Sensing and Photogrammetry Society, I was lucky enough to be able to return to EGU this year, albeit only for the Wednesday. I was there to present my research, in a poster format, based on raw image processing in structure-from-motion workflows. After arriving in Vienna on Tuesday afternoon I went straight the hostel I was staying at to review my poster and to finalize the sessions I would go to.

I got to the conference early in the morning, and set up my poster which was to be presented during the high resolution topography in the geosciences session. After taking a short break to grab a coffee, I headed over to the first session of the day – Imaging, measurements and modelling of physical and biological processes in soils. After last year’s fascinating run of discussions about soil and soil erosion, I decided my one day at EGU would be largely dedicated to that theme!

One particular talk which caught my eye used data fusion of laser scanning and NIR spectrometry with the goal to couple the two datasets for use in examining feedbacks in soil processes. Some very cool kit, and very blue-sky research, a good way to start the day!

After lunch, I almost exclusively attended a land degradation session, which featured some very interesting speakers. Many focused on integrating modern techniques for prevention of soil erosion and gully formation into farming practices in Africa. Interestingly, while the talks almost all focused on case studies and success in showing the physical effects of taking these actions, the Q & As were very much about social aspects, and how to bring about the cultural change within farming communities.

Another notable talk was given by a group who were aiming to promote the use of a targeted carbon economy which sees citizens from carbon consuming countries pay for the upkeep and management of forestry in developing communities. The presentation was very clear and set solid numbers onto each factor introduced, which meant it was much easier to share the vision portrayed, definitely something I’ll be following in the future!

This lead to the poster session in which I was participating, which was well attended and seemed to generate lots of interest. By the time I arrived to present at the evening session, the 15 A4 posters I had printed had been hoovered up, which is always a good sign! Over the course of the hour and a half I was visited by many people who I had met before at various conferences – it’s always nice to have people you know come to say hello, especially as affable a bunch as geomorphologists!


The poster I presented

One group of particular interest were from Trinity College Dublin, where I had done my undergraduate degree many moons ago. Niamh Cullen is doing research into coastal processes in the West of Ireland and is using photogrammetry to make some measurements, and so we had a very good discussion on project requirements/best strategy. She’s also involved in the Irish Geomorphology group, who’s remit seeks to establish a community of geomorphologists in Ireland.

In the evening I attended the ECR geomorphologist dinner, which was great fun, a good way to wrap up proceedings! I look forward to participating in EGU in the future in whatever capacity I can.

Notre Dame

SfM revisited

Snavely’s 2007 paper was one of the first breakout pieces of research bringing the power of bundle adjustment and self-calibration of unordered image collections to the community. It paved the way for the use of SfM in many other contexts, but I always appreciated how simple and focused the piece of work was, and how well explained each step in the process is.


Reconstruction of Notre Dame from Snavely’s paper

For this contribution, I had hoped to try and recreate a figure from this paper, in which the front facade of the Notre Dame cathedral was reconstructed from internet images. I spent last weekend in Paris, so I decided I’d give a go at collecting my own images and pulling them together into a comparable model.

Whilst the doors of the cathedral were not successfully included due to the hordes of tourists in each image, the final model came out OK, and is view-able on my website here.


View of the Cathedral on Potree

HDR stacking

As a second mini-experiment, I thought I’d see how a HDR stack compared with a single exposure from my A7. The dynamic range of the A7, shooting from a tripod at ISO 50 is around 14EV stops, so  I wasn’t expecting a huge amount of dynamic range to be outside this, though potentially parts of the windows could be retrieved. For the experiment, I used both Hugin‘s HDR functionality and a custom python script using openCV bindings for generating HDR images which can be downloaded here.

Results were varied, with really only Merten’s method of HDR generation showing any notable improvement on the original input.

This slideshow requires JavaScript.

Some interesting things happened, including Hugin’s alignment algorithm misaligning the image (or miscalculating the lens distortion) to create a bowed out facade by default, pretty interesting to see! I believe, reading Robertson’s paper, his method was generated more to be used on grayscale images rather than full colour, but thought I’d leave the funky result in for completeness.

If we crop into the middle stain glass we can see some of the fine detail the HDR stacks might be picking up in comparison to the original JPG.

This slideshow requires JavaScript.

We can see a lot of the finer detail of the famous stained-glass windows revealed by Merten’s HDR method, which is very cool to see! I’m impressed with just how big the difference is between it and the default off-camera JPG.

Looking at the raw file from the middle exposure, much of the detail of the stain glass is still there, though has been clipped in the on-camera JPG processing.


Original image processed from RAW and contrast boosted showing fine detail on stained glass

It justifies many of the lines of reasoning I’ve presented in the last few contributions on image compression, as these fine details can often reveal features of interest.

I had actually planned to present the results from a different experiment first, though will be returning to that in a later blog post as it requires much more explanation and data processing, watch this space for future contributions from Paris!