RSPSoc Annual Conference

I had a great time at the RSPSoc conference yesterday, and very much enjoyed catching up with the some of the people I made friends with at Wavelength this year – this is a short entry to just make available the slides of both Mike (supervisor) and myself, who’s primary focus was on image quality in photogrammetric work. Unfortunately I think I filled my slides a little too much and probably could have put in about half the content, but somehow couldn’t stop adding plots from the beautiful seaborn library, lesson learned!

Link to Mike slides

Link to my slides

Looking forward to writing a blog on RAW – JPEG conversions very soon, check the undemosaiced sneak preview below 😉





I’ve been neglecting this blog of late, partly because I’ve been ill and partly because I’ve been focusing my writing efforts elsewhere, but thought it was due time I put something up. Followers might remember that last year at EGU I presented a poster detailing results of investigating the variation of the greyscale input channel into Structure-from-Motion (SfM) photogrammetric blocks. Whilst the results showed very slight differences, I didn’t present one interesting, subtle effect, which shows how robust the process is to differences within images.

Within the SfM process, camera parameters which correct for distortions in the lens are fitted, which can subsequently be extracted for separate analysis. Returning to the greyscaling theme for inclusion in my final thesis, I’m pulling out the lens models for each block, and noticed the focal length being fitted to each block subtly changing, but in a manner we might expect.

Chromatic aberration

Chromatic aberration is caused by differences in the refractive indices of the glass in the lens between light of different wavelengths, which causes the focal point of the image formed for each wavelength to be slightly different. Thus, in colour images and for other optical equipment (I remember seeing it in many different sets of binoculars), we can see colour banding around the edges of high contrast features.


Chromatic aberration seen at the front (red fringe) and back (green fringe) of the candle

Within photogrammetric blocks using single channel, we might expect the focal length to be optimised for specifically that colour’s focal length as it interacts with the specific lens being used. Indeed, this is demonstrable in the tests I have run – we see a slight lengthening of the focal length as more of the red channel is introduced to the image block accounting for the interaction with the lens, testing on an RGB image set collected of a cliff near Hunstanton, UK.


Self-calibrating bundle adjustment fits longer focal lengths to greyscale bands containing a greater proportion of the red channel from an RGB image. Colours of the plotted points represent the RGB colour combination the greyscale photogrammetric block was derived from. The larger circles represent pure red, green and blue channels.

Whilst this might be expected, I was surprised by how obvious a trend was being shown, and it’s testament to how sensitive SfM is at picking up even small changes in image blocks. Watch this space for more insight into what this means for assessing quality of images going into SfM procedures, and how we might gain intuition into image quality as a result of this trend!

Photogrammetry rules of thumb

I’ve uploaded a CloudCompare file of some fieldwork I did last year to my website here. It uses the UK national LiDAR inventory data, mentioned in the post here. I think it espouses lots of the fundamentals discussed here, and is a good starting point for thinking about network design.

80% overlap

This dates way back, and I’m unsure of where I heard it first, but 80% overlap between images in a photogrammetric block with a nadir viewing geometry is an old rule of thumb from aerial imaging (here’s a quick example I found from 1955), and carries through to SfM surveying. I think it should likely be a first port of call for amateurs doing surveys of surfaces, as it’s very easy to jot down an estimate before undertaking a survey. For this, we should consider just camera positions orthogonal to the surface normal (see this post) and estimate a ground sample distance to aid us with camera spacing from there.

1:1000 rule

This has become superseded in recent years, but is still a decent rule of thumb for beginners in photogrammetry. It says that, in general (very general!), the surface precision of a photogrammetric block will be around 1/1000th of the distance to the surface. Thus, if we are imaging a cliff face from 30m away, we can realistically expect accuracy to within 3 cm of that cliff. This is very useful, especially if you know beforehand the required accuracy of the survey. This is also a more stable starting point than GSD, whose quality as a metric which can vary widely depending on your camera selection.

Convergent viewing geometry

Multi-angular data is intuitively desirable to gather, with the additional data comes additional data processing considerations, but recently published literature has suggested that adding these views has the secondary effect of mitigating systematic errors within photogrammetric bundles. Thus, when imaging a surface, try and add cameras at off angles from the surface normal in order to build a ‘strong’ imaging network, to avoid systematic error creeping in.

Shoot in RAW where possible

Whilst maybe unnecessary for many applications, RAW images allow the user to capture a much great range of colour within an image, owing to the fact that colours are written on 12/14 bits rather than the 8 of JPG images. Adding to this, jpg compression can impact the quality of the 3D point clouds, so using uncompressed images is advised.

Mind your motion

Whilst SfM suggests that the camera is moving, we need to bear in mind that moving cameras are subject to blur, and this is sometimes difficult to detect, especially when shooting in tough conditions where you can’t afford to look at previews. Thus, you can pre-calculate a reasonable top speed for the camera to be moving, and stick to that. We recommend a maximum of 1.5 pixels in GSD over the course of each exposure given the literature and as advised by the OS.

Don’t overparameterize the lens model

Very recently, studies have suggested that overparameterizing the lens model, particularly when poorer quality equipment is being used without good ground control, can lead to a completely unsuitable lens model being fit which will impact the quality of results. The advice – only fit f, cx, cy, k1 and k2 parameters if you’re unsure of what you’re doing. This is far from the default settings in most software packages!


I had a few more points in my long list, but for now these 6 will suffice. Whilst I held back on camera selection here you can read my previous camera selection post for some insight into what you should be looking for. Hope this helps!